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Introduction 

This tutorial was written as a companion for two of our tools (Garcia, 2015a; 2015b). These were 

developed to simplify distance (D) and similarity (S) calculations.  

In data mining and information retrieval, these are considered association measures where 

distance is lack of similarity and similarity is resemblance. Some authors prefer to use the term 

‘dissimilarity’ instead of distance.  

 

What is distance? 

Distance is a metric. A  function f is said to be a metric if it exhibits reflexivity, symmetry, and 

triangular inequality. Consider three points a, b, and c describing a triangle in a two-dimensional 

space.  

 

 Reflexivity means that the distance from a point to itself is zero; e.g., f(a, a) = f(b, b) = f(c, 

c) = 0.  

 Symmetry refers to the fact that the distance between any two points, measured from either 

one, is the same; e.g., f(a, b) = f(b, a).  

 Triangular inequality means that the distance between any two points is equal or less than 

the distance between these measured through a third point; e.g., f(a, b) + f(b, c) => f(a, c).  
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If these conditions are not met, the function in question is not a metric. See Figure 1. 

 

 

Figure 1. Three points in a two-dimensional space showing the  

properties of reflexivity, symmetry, and triangular inequality.  

 

Note from the figure that distances cannot be negative and are not naturally upper bounded. In 

the arithmetic sense, we can average, add, or subtract distances to compute new distances. 

 

What is Similarity? 

Similarity is a measure of the resemblance between data sets; i.e., how similar or alike the sets are. 

Although similarities are symmetric, they are not metrics and can be negative and upper or lower 

bounded. For example, Hamann, Yule, and Pearson's Phi adopt values between -1 and +1. In 

addition, the similarity of a point or data set to itself is 1, Sii = 1.  

Similarities cannot be arithmetically averaged, added, or subtracted to compute new 

similarities, and can be rescaled to improve comparisons. For instance, some binary similarity 

measures can adopt values outside the [0, 1] range. These can be rescaled to said range and then 

transformed into distances using the procedure described by Todeschini, et al. (2012).  

In Information Retrieval, the best known similarity measure is the Cosine Similarity. This 

similarity measure is computed by representing data sets as vectors in a term space and then 

comparing the angles formed by the vectors. Figure 2 shows that as the angle between any two 

vectors decreases their cosine similarity increases.  
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Figure 2. Cosine similarities given by the angles between vectors representing data sets . 

The axes represent two arbitrary term dimensions. 

 

For unit vectors, those whose lengths have been normalized to 1, it can be easily demonstrated 

that their dot product is the same as the cosine of the angle between them.  

For mean-centered paired data normalized by their standard deviations (paired z-scores), their 

cosine similarity and Pearson’s correlation coefficient are the same thing. Because cosines are not 

additive, we must conclude that we cannot arithmetically add and average correlation coefficients, 

or similarity measures.  

 

Tools for Computing Distances and Similarities 

As mentioned early, we have developed two tools for solving distance and similarity problems. 

Both tools work by accepting any two binary data sets of same size. Consider the following data 

sets. 

 

A = {1,0,1,1,0}  

B = {1,1,0,1,1}  

 

We may express their distance or similarity using one or several different frameworks, 

depending on the meaning of the 0's and 1's or the problem at hand. Our tools do this by generating 

2x2 contingency tables consisting of the following (i,j) counts:  
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 (1,1) counts, meaning 'positive matches'.  

 (1,0) counts, meaning 'i absence mismatches'.  

 (0,1) counts, meaning 'j absence mismatches'.  

 (0,0) counts, meaning 'negative matches'.  

 

Those familiar with 2x2 contingency tables know that for binary data the diagonal from (1,1) to 

(0,0) represents the total number of matches or "correct answers" between i and j. By contrast, the 

diagonal from (0,1) to (1,0) represents the total number of mismatches or "incorrect answers" 

between i and j. This is the so-called Hamming Distance.  

The Hamming Distance is a measure that only allows substitutions and applies to sets of same 

size. For binary sets of same size, the Hamming, Manhattan (City-Block), and Squared Euclidean 

distances are all the same thing. For same-size sets, Hamming Distance is an upper bound on the 

Levenshtein Distance.   

 

Distance-Similarity Transformations 

As noted by Lin (1998), the definition of similarity depends on the model or knowledge domain 

under inspection and is tied to a specific problem. Arbitrarily transforming distances into 

similarities and vice versa compounds many of the problems described by Lin.  

Sometimes such transformations are done using the following “tricks of the trade” (du Toit, 

Steyn, & Stumpf, 1986; Lin, 1998; Tolechini, et. al., 2012). 

 

                             (1) 

 

  
   

 
                        (2) 

 

                               (3) 

 

                                (4) 
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                                  (5) 

 

                              (6) 

 

where (1) is typically used to transform Jaccard, Dice, Sokal-Michener, Rogers-Tanimoto, and 

Rusell-Rao similarities into distances (Wolfram, 2015).  

In general, the similarity-distance transformations to be used depend on the problem to be 

solved. As stressed by du Toit, et al. (1986), while a distance can be transformed into a similarity, 

the reverse process is not so obvious because of the triangular inequality which must be satisfied 

by a distance metric.  

So given a similarity matrix S populated with Sjj values: How could we compute the 

corresponding distance matrix D? Well, assuming that the similarity matrix S is positive semi-

definite 

 

                                          (7) 

  

is the standard transformation from S to D. For the particular case of Sii = Sjj = 1, 

 

                                       (8) 

 

so matrix D can be easily computed. 

 

Conclusion 

Symmetry is a property inherent to distances and similarities. However, distances are always 

positive while similarities can be negative.  

Distances are metrics, but similarities are not. We can arithmetically average, add, or subtract 

distances to compute new distances, but we cannot do the same with similarities. If similarity is 

resemblance and distance is lack of resemblance, then “similarity distance” (Cilibrasi & Vitányi, 

2007) is an oxymoron. 
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