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Introduction 

In Part 1 of this series on vector space models (Garcia, 2016a) it was mentioned that in Information 

Retrieval (IR) local and global information are used to score term weights 

 

                                 (1) 

 

where Li,j accounts for the presence of a term in a document and Gi across the collection.  

The difference between the several models depends on how Li,j and Gi are defined (Baeza-

Yates & Ribeiro-Neto, 1999; Grossman & Frieder, 2004; Rijsbergen, 2004). In the next sections, 

we discuss two of these models. 

 

The Binary Model (BNRY) 

The simplest model one can think of is a binary model (BNRY) where local weights are considered 

independent of term frequencies and where global weights are ignored.  
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In (1), wi,j = Li,j = 1 if the term is in the document; otherwise, wi,j = Li,j = 0.  
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BNRY is recommended for pre-weighting or quickly scanning a small index and for scoring 

small collections of short titles, abstracts, and documents. As documents of different lengths are 

equally weighted, it is a low precision model (Salton & Yang, 1973) in the sense that it cannot 

discriminate between relevant and non-relevant results.  

Because of that, a retrieval system using BNRY will frequently find vocabulary-rich documents 

simply because they happen to mention query terms. Thus, the model can be easily gamed by 

automatically generating documents or pseudo-documents with frequently queried terms. This is 

one of the many forms of spamdexing used across the Web (AIRWeb, 2007). 

We can improve the model by making local weights a linear function of term frequencies. This 

leads us to the Term Count Model. 

 

The Term Count Model (FREQ) 

The main assumption behind this model is that a document repeating a term several times is likely 

to be relevant to said term. This idea was first proposed by Luhn and investigated by Salton and 

Yang (Luhn, 1953; 1957; Salton & Yang, 1973; Salton, 1983). 

 

So by making local weights a linear function of term frequencies 

 

                                   (3) 

 

one should be able to improve retrieval precision by finding relevant results at the top of the search 

results. This is what the Term Count Model, also known as FREQ (Chisholm & Kolda, 1999), tries 

to accomplish.  

Unfortunately, assuming a linear relationship function between local weights and term 

frequencies (Li,j = fi,j) is not a best matching approach, but can be exploited by simply repeating a 

term. This is another form of spamdexing known as keyword stuffing (AIRWeb 2007). 

One way of avoiding term repetition abuses consists in assigning a variable weight to different 

instances of a given term. This is what Best Matching (BM) Algorithms try to accomplish, the most 

famous of these is BM25 and its many variants (Wikipedia, 2016). These algorithms are discussed 

in another tutorial series. 
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The Vector Space 

Regardless of the weighting scheme used, documents and queries can be represented as objects 

(points or vectors) in an n-dimensional space where each term is a dimension. So a document dj 

with n number of terms can be represented as a point or vector with coordinates dj(w1,j, w2,j … wn,j). 

As a query is like another document, its coordinates in said space are q(w1,q, w2,q … wn,q).  

A vector is a quantity with direction and magnitude. The direction of a vector relative to other 

vectors is obtained by multiplying their coordinates. The result is a quantity called the dot product, 

dj•q. Thus, the dot product between a document and a query is obtained by multiplying the 

coordinates  dj(w1,j, w2,j … wn,j) and q(w1,q, w2,q … wn,q) and adding together the products,  

 

 dj•q = w1,j* w1,q + w2,j* w2,q … wn,j* wn,q            
 
            (4) 

 

 Figure 1. shows the dot product between a document mentioning [auto] and [insurance] three 

times each and [car] once. The query consists of the term [insurance]. The document vector is at 

d(3, 1, 3) and the query vector at q(0, 0, 1). 

 

 

 

Figure 1. Document and query vectors computed with the Term Count Model. 

 

The magnitude of a vector is simply its Euclidean length, L, also known as the L2-norm, and 

computed by squaring individual coordinates, adding them together, and taking square roots. Thus 

for a document and query vectors, dj and q, their absolute magnitudes are  
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Dividing (4) with (5) and (6), we obtain the cosine of the angle, cos(), between document and 

query vectors. As the two vectors approach each other, the angle between them, , decreases and 

the cosine of the angle, cos(), increases. If the two vectors are superimposed, cos() = 1, and the 

two vectors are fully similar to one another. 

When computed to compare dj and q, cos() is taken for a resemblance measure and referred to 

as the cosine similarity between dj and q,          , 

 

            
    

         
  

          
 
   

      
  

          
  

   

              (7) 

 

As cosines are not additive (i.e., a sum of cosines is not a cosine), they cannot be arithmetically 

averaged. Therefore, computing arithmetic averages from cosine similarities is a misleading flawed 

practice. 

As shown later in this tutorial, (7) can also be obtained by computing dot products from unit 

vectors; i.e., by normalizing vector elements with the vector length before computing their dot 

products. This is the so-called cosine normalization. To indicate its usage, (1) is rewritten as 

 

                                  (8) 

 

where  

 

   
 

             

  
   

                     (9)  

 

Other forms of weight normalizations have been proposed, though (Singhal, Buckley,  & Mitra, 

1996a; Singhal, Salton, Mitra & Buckley, 1996a; Singhal, Salton & Buckley, 1996c; Chisholm & 

Kolda, 1999). Still, the Binary and Term Count models still tend to favor long documents simply 

because they are longer (Lee, Chuang, & Seamons, 1997). 
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Cosine Similarity Calculations 

Table 1 shows the result of scoring a collection of three documents mentioning the terms [auto], 

[car], or [insurance] with the query [insurance] using the Term Count Model (FREQ).  

 

Table 1. Term Count Model Results for 3 documents. 

Index terms q 

 

d1 d2 d3 

auto 0 

 

3 1 2 

car 0 

 

1 2 3 

insurance 1 

 

3 4 0 
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 4.36 4.58 3.61 

 

 
      

 
 

   

      
 

 

   

 4.36 4.58 3.61 

 

 

           
          

 
   

      
  

         
  

   

 
0.69 0.87 0 

 

As expected, 

 

            
          

 
   

      
  

          
  

   

 
 

       
      

 

            
          

 
   

      
  

          
  

   

 
 

       
      

 

            
          

 
   

      
  

          
  

   

 
 

       
   

 

Therefore, the documents are ranked in the following order: d2 > d1 > d3. 
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A Linear Algebra Approach 

In a recent tutorial, we discussed a linear algebra approach that greatly simplifies vector space 

calculations (Garcia, 2016b). 

Essentially, the matrix qTA is computed where qT is the transpose of  q and A is a matrix of 

unit vectors   
 . A unit vector, denoted with a hat (^), is obtained by dividing a vector elements by 

its magnitude (L2-norm or Euclidean length). Thus, qTA is a matrix filled with cosine similarities 

equal to dot products. The q, A, and qTA matrices obtained from the data shown in Table 1 are 

 

Index terms       
 

   
    

    
   

auto  

 

0 

 

 

 

0.69 0.22 0.55 

 car q = 0 A = 0.23 0.44 0.83 

insurance  1 

 

0.69 0.87 0.00 

 

  

d1 d2 d3 

 q
T
A = [ 0.69 0.87 0 ] 

 

Notice that the documents are ranked as before. To sum up, the so-called cosine normalization 

is another way to say that we are computing the dot product between unit vectors. When unit 

vectors are multiplied, by definition their dot product equals the cosine of the angle between them.  

 Another way of achieving the same results consists in augmenting A with the unit vector of the 

query and then computing the ATA similarity matrix. The query vector can be placed as the first 

column vector, like this  

 

Index terms        
    

    
   

auto  

 

0 0.69 0.22 0.55 

 car A = 0 0.23 0.44 0.83 

insurance  1 0.69 0.87 0.00 

 

  q d1 d2 d3   

 

 

1.00 0.69 0.87 0.00 

 

q 

A
T
A = 0.69 1.00 0.85 0.57 d1 

 0.87 0.85 1.00 0.48 d2 

 0.00 0.57 0.48 1.00 d3 
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Augmenting A in this way can be justified as in the vector space the query vector behaves like 

a document vector. For the purpose of comparing vector similarities, making the query vector the 

first, last, or a given column vector of A does not really matter. 

So what do we gain from computing ATA? First, document ranking results are readily 

computed, in this case from the first row or column of ATA. Second, a straightforward comparison 

of document vector similarities is possible. In this example,  

 

sim(d1, d2) = 0.85  

sim(d1, d3) = 0.57  

sim(d2, d3) = 0.48 

 

That is, d1 and d2 are the most similar documents. 

   

Conclusion 

The advantages and limitations of the Binary (BNRY) and Term Count (FREQ) models have been 

covered. Both models are based on computing local weights, ignoring global information.  

BNRY ignores term frequencies, but FREQ does not. Both models ignore global information, 

tend to favor long document, and are vulnerable to spamdexing. As both are based on matching 

terms, documents not mentioning query terms, but their synonyms, are not retrieved even if these 

are relevant to the query. This is a common drawback found in most vector space models.  

 

Exercises 

1. Rework this tutorial exercise, this time by defining Li,j in (3) as follows where for a given 

document maxfi,j is its maximum term frequency and avefi,j its average term frequency. See 

Chisholm & Kolda (1999). 

 

      

    

       
  

           

  

      
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